Blog Competition 2019 #2019GANTIBIMBEL

Buktikan bahwa 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{1}{4} n^2 (n + 1)^2

Buktikan bahwa 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{1}{4} n^2 (n + 1)^2.
Pembahasan :
  • Langkah 1
1^3 = \frac{1}{4}(1)^2(1 + 1)^2 = \frac{2^2}{4}
1 = 1    (terbukti)
  • Langkah 2 (n = k)
1^3 + 2^3 + 3^3 + \cdots + k^3 = \frac{1}{4}k^2(k + 1)^2
  • Langkah 3 (n = k + 1)
1^3 + 2^3 + 3^3 + \cdots + k^3(k + 1)^3 = \frac{1}{4}(k + 1)^2 (k + 2)^3.
 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1 )^3 + (k + 1)^3 = \frac{1}{4}k^2(k + 1)^2 + (k + 1)^3   (kedua ruas ditambah (k + 1)^3.
 1^3 + 2^3 + 3^3 + \cdots + (k + 1)^3= (k + 1)^2 (\frac{1}{4}k^2 + (k + 1))
 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k +1)^3 = (k + 1)
 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2 (k^2 + 4k + 4)
 1^3 + 2^3 +3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2(k + 2)(k + 2)
 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2(k + 2)^2     {terbukti).